本文内容由科赛网翻译整理自Github开源项目(部分题目保留了原文作参考),建议读者完成科赛网 Numpy快速上手指南 --- 基础篇 和 Numpy快速上手指南 --- 进阶篇 这两篇教程的学习之后,再对此教程进行调试学习。
以下为100道Numpy习题及答案
Code: [全选] [Expand/Collapse]
- 1. 导入numpy库并简写为 np
- (提示: import … as …)
- In [ ]:
- # import numpy as np
- 2. 打印numpy的版本和配置说明
- (提示: np.__version__, np.show_config)
- In [ ]:
- # print(np.__version__)
- # np.show_config()
- 3. 创建一个长度为10的空向量
- (提示: np.zeros)
- In [ ]:
- # Z = np.zeros(10)
- # print(Z)
- 4. 如何找到任何一个数组的内存大小?
- (提示: size, itemsize)
- In [ ]:
- # Z = np.zeros((10,10))
- # print("%d bytes" % (Z.size * Z.itemsize))
- 5. 如何从命令行得到numpy中add函数的说明文档?
- (提示: http://np.info)
- In [ ]:
- # http://numpy.info(numpy.add)
- 6. 创建一个长度为10并且除了第五个值为1的空向量
- (提示: array[4])
- In [ ]:
- # Z = np.zeros(10)
- # Z[4] = 1
- # print(Z)
- 7. 创建一个值域范围从10到49的向量
- (提示: np.arange)
- In [ ]:
- # Z = np.arange(10,50)
- # print(Z)
- 8. 反转一个向量(第一个元素变为最后一个)
- (提示: array[::-1])
- In [ ]:
- # Z = np.arange(50)
- # Z = Z[::-1]
- # print(Z)
- 9. 创建一个 3x3 并且值从0到8的矩阵
- (提示: reshape)
- In [ ]:
- # Z = np.arange(9).reshape(3,3)
- # print(Z)
- 10. 找到数组[1,2,0,0,4,0]中非0元素的位置索引
- (提示: np.nonzero)
- In [ ]:
- # nz = np.nonzero([1,2,0,0,4,0])
- # print(nz)
- 11. 创建一个 3x3 的单位矩阵
- (提示: np.eye)
- In [ ]:
- # Z = np.eye(3)
- # print(Z)
- 12. 创建一个 3x3x3的随机数组
- (提示: np.random.random)
- In [ ]:
- # Z = np.random.random((3,3,3))
- # print(Z)
- 13. 创建一个 10x10 的随机数组并找到它的最大值和最小值
- (提示: min, max)
- In [ ]:
- # Z = np.random.random((10,10))
- # Zmin, Zmax = Z.min(), Z.max()
- # print(Zmin, Zmax)
- 14. 创建一个长度为30的随机向量并找到它的平均值
- (提示: mean)
- In [ ]:
- # Z = np.random.random(30)
- # m = Z.mean()
- # print(m)
- 15.创建一二维数组,其中边界值为1,其余值为0
- (提示: array[1:-1, 1:-1])
- In [ ]:
- # Z = np.ones((10,10))
- # Z[1:-1,1:-1] = 0
- # print(Z)
- 16. 对于一个存在在数组,如何添加一个用0填充的边界?
- (提示: np.pad)
- In [ ]:
- # Z = np.ones((5,5))
- # Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
- # print(Z)
- 17. 以下表达式运行的结果分别是什么?
- (提示: NaN = not a number, inf = infinity)
- 0*np.nan
- np.nan==np.nan
- np.inf>np.nan
- np.nan-np.nan
- 0.3==3*0.1
- In [ ]:
- # print(0 * np.nan)
- In [ ]:
- # print(np.nan == np.nan)
- In [ ]:
- # print(np.inf > np.nan)
- In [ ]:
- # print(np.nan - np.nan)
- In [ ]:
- # print(0.3 == 3 * 0.1)
- 18. 创建一个 5x5的矩阵,并设置值1,2,3,4落在其对角线下方位置
- (提示: np.diag)
- In [ ]:
- # Z = np.diag(1+np.arange(4),k=-1)
- # print(Z)
- 19. 创建一个8x8 的矩阵,并且设置成棋盘样式
- (提示: array[::2])
- In [ ]:
- # Z = np.zeros((8,8),dtype=int)
- #Z[1::2,::2] = 1
- # Z[::2,1::2] = 1
- # print(Z)
- 20. 考虑一个 (6,7,8) 形状的数组,其第100个元素的索引(x,y,z)是什么?
- (提示: np.unravel_index)
- In [ ]:
- # print(np.unravel_index(100,(6,7,8)))
- 21. 用tile函数去创建一个 8x8的棋盘样式矩阵
- (提示: np.tile)
- In [ ]:
- # Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
- # print(Z)
- 22. 对一个5x5的随机矩阵做归一化
- (提示: (x - min) / (max - min))
- In [ ]:
- # Z = np.random.random((5,5))
- # Zmax, Zmin = Z.max(), Z.min()
- # Z = (Z - Zmin)/(Zmax - Zmin)
- # print(Z)
- 23. 创建一个将颜色描述为(RGBA)四个无符号字节的自定义dtype?
- (提示: np.dtype)
- In [ ]:
- # color = np.dtype([("r", np.ubyte, 1),
- # ("g", np.ubyte, 1),
- # ("b", np.ubyte, 1),
- # ("a", np.ubyte, 1)])
- # color
- 24. 一个5x3的矩阵与一个3x2的矩阵相乘,实矩阵乘积是什么?
- (提示: np.dot | @)
- In [ ]:
- # Z = np.dot(np.ones((5,3)), np.ones((3,2)))
- # print(Z)
- 25. 给定一个一维数组,对其在3到8之间的所有元素取反
- (提示: >, <=)
- In [ ]:
- # Z = np.arange(11)
- # Z[(3 < Z) & (Z <= 8)] *= -1
- # print(Z)
- 26. 下面脚本运行后的结果是什么?
- (提示: np.sum)
- In [ ]:
- # print(sum(range(5),-1))
- In [ ]:
- # from numpy import *
- # print(sum(range(5),-1))
- 27. 考虑一个整数向量Z,下列表达合法的是哪个?
- Z**Z
- 2<<Z>>2
- Z<-Z
- 1j*Z
- Z/1/1
- Z<Z>Z
- In [ ]:
- # Z = np.arange(5)
- # Z ** Z # legal
- In [ ]:
- # Z = np.arange(5)
- # 2 << Z >> 2 # false
- In [ ]:
- # Z = np.arange(5)
- # Z <- Z # legal
- In [ ]:
- # Z = np.arange(5)
- # 1j*Z # legal
- In [ ]:
- # Z = np.arange(5)
- # Z/1/1 # legal
- In [ ]:
- # Z = np.arange(5)
- # Z<Z>Z # false
- 28. 下列表达式的结果分别是什么?
- np.array(0) /np.array(0)
- np.array(0) //np.array(0)
- np.array([np.nan]).astype(int).astype(float)
- In [ ]:
- # print(np.array(0) / np.array(0))
- In [ ]:
- # print(np.array(0) // np.array(0))
- In [ ]:
- # print(np.array([np.nan]).astype(int).astype(float))
- 29. 如何从零位对浮点数组做舍入 ?
- (提示: np.uniform, np.copysign, np.ceil, np.abs)
- In [ ]:
- # Z = np.random.uniform(-10,+10,10)
- # print (np.copysign(np.ceil(np.abs(Z)), Z))
- 30. 如何找到两个数组中的共同元素?
- (提示: np.intersect1d)
- In [ ]:
- # Z1 = np.random.randint(0,10,10)
- # Z2 = np.random.randint(0,10,10)
- # print(np.intersect1d(Z1,Z2))
- 31. 如何忽略所有的 numpy 警告(尽管不建议这么做)?
- (提示: np.seterr, np.errstate)
- # Suicide mode on
- defaults=np.seterr(all="ignore")
- Z=np.ones(1) /0
- # Back to sanity
- _=np.seterr(**defaults)
- Anequivalentway, withacontextmanager:
- withnp.errstate(divide='ignore'):
- Z=np.ones(1) /0
- 32. 下面的表达式是正确的吗?
- (提示: imaginary number)
- np.sqrt(-1) ==np.emath.sqrt(-1)
- In [ ]:
- # np.sqrt(-1) == np.emath.sqrt(-1) # False
- 33. 如何得到昨天,今天,明天的日期?
- (提示: np.datetime64, np.timedelta64)
- In [ ]:
- # yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
- # today = np.datetime64('today', 'D')
- # tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
- # print ("Yesterday is " + str(yesterday))
- # print ("Today is " + str(today))
- # print ("Tomorrow is "+ str(tomorrow))
- 34. 如何得到所有与2016年7月对应的日期?
- (提示: np.arange(dtype=datetime64['D']))
- In [ ]:
- # Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
- # print(Z)
- 35. 如何直接在位计算(A+B)\*(-A/2)(不建立副本)?
- (提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=))
- In [ ]:
- # A = np.ones(3)*1
- # B = np.ones(3)*2
- # C = np.ones(3)*3
- # np.add(A,B,out=B)
- In [ ]:
- # np.divide(A,2,out=A)
- In [ ]:
- # np.negative(A,out=A)
- In [ ]:
- # np.multiply(A,B,out=A)
- 36. 用五种不同的方法去提取一个随机数组的整数部分
- (提示: %, np.floor, np.ceil, astype, np.trunc)
- In [ ]:
- # Z = np.random.uniform(0,10,10)
- # print (Z - Z%1)
- In [ ]:
- # print (np.floor(Z))
- In [ ]:
- # print (np.ceil(Z)-1)
- In [ ]:
- # print (Z.astype(int))
- In [ ]:
- # print (np.trunc(Z))
- 37. 创建一个5x5的矩阵,其中每行的数值范围从0到4
- (提示: np.arange)
- In [ ]:
- # Z = np.zeros((5,5))
- # Z += np.arange(5)
- # print (Z)
- 38. 通过考虑一个可生成10个整数的函数,来构建一个数组
- (提示: np.fromiter)
- In [ ]:
- # def generate():
- # for x in range(10):
- # yield x
- # Z = np.fromiter(generate(),dtype=float,count=-1)
- # print (Z)
- 39. 创建一个长度为10的随机向量,其值域范围从0到1,但是不包括0和1
- (提示: np.linspace)
- In [ ]:
- # Z = np.linspace(0,1,11,endpoint=False)[1:]
- # print (Z)
- 40. 创建一个长度为10的随机向量,并将其排序
- (提示: sort)
- In [ ]:
- # Z = np.random.random(10)
- # Z.sort()
- # print (Z)
- 41.对于一个小数组,如何用比 np.sum更快的方式对其求和?
- (提示: np.add.reduce)
- In [ ]:
- # Z = np.arange(10)
- # np.add.reduce(Z)
- 42. 对于两个随机数组A和B,检查它们是否相等
- (提示: np.allclose, np.array_equal)
- In [ ]:
- # A = np.random.randint(0,2,5)
- # B = np.random.randint(0,2,5)
- # # Assuming identical shape of the arrays and a tolerance for the comparison of values
- # equal = np.allclose(A,B)
- # print(equal)
- In [ ]:
- # # 方法2
- # # Checking both the shape and the element values, no tolerance (values have to be exactly equal)
- # equal = np.array_equal(A,B)
- # print(equal)
- 43. 创建一个只读数组(read-only)
- (提示: flags.writeable)
- # 使用如下过程实现
- Z=np.zeros(10)
- Z.flags.writeable=False
- Z[0] =1
- ---------------------------------------------------------------------------
- ValueErrorTraceback(mostrecentcalllast)
- <ipython-input-54-6fd4c6570dd1>in<module>()
- 1Z=np.zeros(10)
- 2Z.flags.writeable=False
- ---->3Z[0] =1
- ValueError: assignmentdestinationisread-only
- 44. 将笛卡尔坐标下的一个10x2的矩阵转换为极坐标形式
- (hint: np.sqrt, np.arctan2)
- In [ ]:
- # Z = np.random.random((10,2))
- # X,Y = Z[:,0], Z[:,1]
- # R = np.sqrt(X**2+Y**2)
- # T = np.arctan2(Y,X)
- # print (R)
- # print (T)
- 45. 创建一个长度为10的向量,并将向量中最大值替换为1
- (提示: argmax)
- In [ ]:
- # Z = np.random.random(10)
- # Z[Z.argmax()] = 0
- # print (Z)
- 46. 创建一个结构化数组,并实现 x 和 y 坐标覆盖 [0,1]x[0,1] 区域
- (提示: np.meshgrid)
- In [ ]:
- # Z = np.zeros((5,5), [('x',float),('y',float)])
- # Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5),
- # np.linspace(0,1,5))
- # print(Z)
- 47. 给定两个数组X和Y,构造Cauchy矩阵C (Cij =1/(xi - yj))
- (提示: np.subtract.outer)
- In [ ]:
- # X = np.arange(8)
- # Y = X + 0.5
- # C = 1.0 / np.subtract.outer(X, Y)
- # print(np.linalg.det(C))
- 48. 打印每个numpy标量类型的最小值和最大值?
- (提示: np.iinfo, np.finfo, eps)
- In [ ]:
- # for dtype in [np.int8, np.int32, np.int64]:
- # print(np.iinfo(dtype).min)
- # print(np.iinfo(dtype).max)
- # for dtype in [np.float32, np.float64]:
- # print(np.finfo(dtype).min)
- # print(np.finfo(dtype).max)
- # print(np.finfo(dtype).eps)
- 49. 如何打印一个数组中的所有数值?
- (提示: np.set_printoptions)
- In [ ]:
- # np.set_printoptions(threshold=np.nan)
- # Z = np.zeros((16,16))
- # print (Z)
- 50. 给定标量时,如何找到数组中最接近标量的值?
- (提示: argmin)
- In [ ]:
- # Z = np.arange(100)
- # v = np.random.uniform(0,100)
- # index = (np.abs(Z-v)).argmin()
- # print (Z[index])
- 51. 创建一个表示位置(x,y)和颜色(r,g,b)的结构化数组
- (提示: dtype)
- In [ ]:
- # Z = np.zeros(10, [ ('position', [ ('x', float, 1),
- # ('y', float, 1)]),
- # ('color', [ ('r', float, 1),
- # ('g', float, 1),
- # ('b', float, 1)])])
- # print (Z)
- 52. 对一个表示坐标形状为(100,2)的随机向量,找到点与点的距离
- (提示: np.atleast_2d, T, np.sqrt)
- In [ ]:
- # Z = np.random.random((10,2))
- # X,Y = np.atleast_2d(Z[:,0], Z[:,1])
- # D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
- # print (D)
- In [ ]:
- # # 方法2
- # # Much faster with scipy
- # import scipy
- # # Thanks Gavin Heverly-Coulson (#issue 1)
- # import scipy.spatial
- # D = scipy.spatial.distance.cdist(Z,Z)
- # print (D)
- 53. 如何将32位的浮点数(float)转换为对应的整数(integer)?
- (提示: astype(copy=False))
- In [ ]:
- # Z = np.arange(10, dtype=np.int32)
- # Z = Z.astype(np.float32, copy=False)
- # print (Z)
- 54. 如何读取以下文件?
- (提示: np.genfromtxt)
- 1, 2, 3, 4, 5
- 6, , , 7, 8
- , , 9,10,11
- 参考链接
- 55. 对于numpy数组,enumerate的等价操作是什么?
- (提示: np.ndenumerate, np.ndindex)
- In [ ]:
- # Z = np.arange(9).reshape(3,3)
- # for index, value in np.ndenumerate(Z):
- # print (index, value)
- # for index in np.ndindex(Z.shape):
- # print (index, Z[index])
- 56. 生成一个通用的二维Gaussian-like数组
- (提示: np.meshgrid, np.exp)
- In [ ]:
- # X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
- # D = np.sqrt(X*X+Y*Y)
- # sigma, mu = 1.0, 0.0
- # G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
- # print (G)
- 57. 对一个二维数组,如何在其内部随机放置p个元素?
- (提示: np.put, np.random.choice)
- In [ ]:
- # n = 10
- # p = 3
- # Z = np.zeros((n,n))
- # np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
- # print (Z)
- 58. 减去一个矩阵中的每一行的平均值
- (提示: mean(axis=,keepdims=))
- In [ ]:
- # X = np.random.rand(5, 10)
- # # Recent versions of numpy
- # Y = X - X.mean(axis=1, keepdims=True)
- # print(Y)
- In [ ]:
- # # 方法2
- # # Older versions of numpy
- # Y = X - X.mean(axis=1).reshape(-1, 1)
- # print (Y)
- 59. 如何通过第n列对一个数组进行排序?
- (提示: argsort)
- In [ ]:
- # Z = np.random.randint(0,10,(3,3))
- # print (Z)
- # print (Z[Z[:,1].argsort()])
- 60. 如何检查一个二维数组是否有空列?
- (提示: any, ~)
- In [ ]:
- # Z = np.random.randint(0,3,(3,10))
- # print ((~Z.any(axis=0)).any())
- 61. 从数组中的给定值中找出最近的值
- (提示: np.abs, argmin, flat)
- In [ ]:
- # Z = np.random.uniform(0,1,10)
- # z = 0.5
- # m = Z.flat[np.abs(Z - z).argmin()]
- # print (m)
- 62. 如何用迭代器(iterator)计算两个分别具有形状(1,3)和(3,1)的数组?
- (提示: np.nditer)
- In [ ]:
- # A = np.arange(3).reshape(3,1)
- # B = np.arange(3).reshape(1,3)
- # it = np.nditer([A,B,None])
- # for x,y,z in it:
- # z[...] = x + y
- # print (it.operands[2])
- 63. 创建一个具有name属性的数组类
- (提示: class方法)
- In [ ]:
- # class NamedArray(np.ndarray):
- # def __new__(cls, array, name="no name"):
- # obj = np.asarray(array).view(cls)
- # obj.name = name
- # return obj
- # def __array_finalize__(self, obj):
- # if obj is None: return
- # http://self.info = getattr(obj, 'name', "no name")
- # Z = NamedArray(np.arange(10), "range_10")
- # print (Z.name)
- 64. 考虑一个给定的向量,如何对由第二个向量索引的每个元素加1(小心重复的索引)?
- (提示: np.bincount | np.add.at)
- In [ ]:
- # Z = np.ones(10)
- # I = np.random.randint(0,len(Z),20)
- # Z += np.bincount(I, minlength=len(Z))
- # print(Z)
- In [ ]:
- # # 方法2
- # np.add.at(Z, I, 1)
- # print(Z)
- 65. 根据索引列表(I),如何将向量(X)的元素累加到数组(F)?
- (提示: np.bincount)
- In [ ]:
- # X = [1,2,3,4,5,6]
- # I = [1,3,9,3,4,1]
- # F = np.bincount(I,X)
- # print (F)
- 66. 考虑一个(dtype=ubyte) 的 (w,h,3)图像,计算其唯一颜色的数量
- (提示: np.unique)
- In [ ]:
- # w,h = 16,16
- # I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
- # #Note that we should compute 256*256 first.
- # #Otherwise numpy will only promote F.dtype to 'uint16' and overfolw will occur
- # F = I[...,0]*(256*256) + I[...,1]*256 +I[...,2]
- # n = len(np.unique(F))
- # print (n)
- 67. 考虑一个四维数组,如何一次性计算出最后两个轴(axis)的和?
- (提示: sum(axis=(-2,-1)))
- In [ ]:
- # A = np.random.randint(0,10,(3,4,3,4))
- # # solution by passing a tuple of axes (introduced in numpy 1.7.0)
- # sum = A.sum(axis=(-2,-1))
- # print (sum)
- In [ ]:
- # # 方法2
- # sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
- # print (sum)
- 68. 考虑一个一维向量D,如何使用相同大小的向量S来计算D子集的均值?
- (提示: np.bincount)
- In [ ]:
- # D = np.random.uniform(0,1,100)
- # S = np.random.randint(0,10,100)
- # D_sums = np.bincount(S, weights=D)
- # D_counts = np.bincount(S)
- # D_means = D_sums / D_counts
- # print (D_means)
- In [ ]:
- # # 方法2
- # import pandas as pd
- # print(pd.Series(D).groupby(S).mean())
- 69. 如何获得点积 dot prodcut的对角线?
- (提示: np.diag)
- In [ ]:
- # A = np.random.uniform(0,1,(5,5))
- # B = np.random.uniform(0,1,(5,5))
- # # slow version
- # np.diag(np.dot(A, B))
- In [ ]:
- ## 方法2
- # # Fast version
- # np.sum(A * B.T, axis=1)
- In [ ]:
- ## 方法3
- # # Faster version
- # np.einsum("ij,ji->i", A, B)
- 70. 考虑一个向量[1,2,3,4,5],如何建立一个新的向量,在这个新向量中每个值之间有3个连续的零?
- (提示: array[::4])
- In [ ]:
- # Z = np.array([1,2,3,4,5])
- # nz = 3
- # Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
- # Z0[::nz+1] = Z
- # print (Z0)
- 71. 考虑一个维度(5,5,3)的数组,如何将其与一个(5,5)的数组相乘?
- (提示: array[:, :, None])
- In [ ]:
- # A = np.ones((5,5,3))
- # B = 2*np.ones((5,5))
- # print (A * B[:,:,None])
- 72. 如何对一个数组中任意两行做交换?
- (提示: array[[]] = array[[]])
- In [ ]:
- # A = np.arange(25).reshape(5,5)
- # A[[0,1]] = A[[1,0]]
- # print (A)
- 73. 考虑一个可以描述10个三角形的triplets,找到可以分割全部三角形的line segment
- (提示: repeat, np.roll, np.sort, view, np.unique)
- In [ ]:
- # faces = np.random.randint(0,100,(10,3))
- # F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
- # F = F.reshape(len(F)*3,2)
- # F = np.sort(F,axis=1)
- # G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
- # G = np.unique(G)
- # print (G)
- 74. 给定一个二进制的数组C,如何产生一个数组A满足np.bincount(A)==C
- (提示: np.repeat)
- In [ ]:
- # C = np.bincount([1,1,2,3,4,4,6])
- # A = np.repeat(np.arange(len(C)), C)
- # print (A)
- 75. 如何通过滑动窗口计算一个数组的平均数?
- (提示: np.cumsum)
- In [ ]:
- # def moving_average(a, n=3) :
- # ret = np.cumsum(a, dtype=float)
- # ret[n:] = ret[n:] - ret[:-n]
- # return ret[n - 1:] / n
- # Z = np.arange(20)
- # print(moving_average(Z, n=3))
- 76. 考虑一维数组Z,构建一个二维数组,其第一行是(Z [0],Z [1],Z [2]),每个后续行移1(最后一行应该是( Z [-3],Z [-2],Z [-1])
- (提示: from numpy.lib import stride_tricks)
- In [ ]:
- # from numpy.lib import stride_tricks
- # def rolling(a, window):
- # shape = (a.size - window + 1, window)
- # strides = (a.itemsize, a.itemsize)
- # return stride_tricks.as_strided(a, shape=shape, strides=strides)
- # Z = rolling(np.arange(10), 3)
- # print (Z)
- 77. 如何对布尔值取反,或者原位(in-place)改变浮点数的符号(sign)?
- (提示: np.logical_not, np.negative)
- In [ ]:
- # Z = np.random.randint(0,2,100)
- # np.logical_not(Z, out=Z)
- In [ ]:
- # Z = np.random.uniform(-1.0,1.0,100)
- # np.negative(Z, out=Z)
- 78. 考虑两组点集P0和P1去描述一组线(二维)和一个点p,如何计算点p到每一条线 i (P0[i],P1[i])的距离?
- In [ ]:
- # def distance(P0, P1, p):
- # T = P1 - P0
- # L = (T**2).sum(axis=1)
- # U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
- # U = U.reshape(len(U),1)
- # D = P0 + U*T - p
- # return np.sqrt((D**2).sum(axis=1))
- # P0 = np.random.uniform(-10,10,(10,2))
- # P1 = np.random.uniform(-10,10,(10,2))
- # p = np.random.uniform(-10,10,( 1,2))
- # print (distance(P0, P1, p))
- 79.考虑两组点集P0和P1去描述一组线(二维)和一组点集P,如何计算每一个点 j(P[j]) 到每一条线 i (P0[i],P1[i])的距离?
- In [ ]:
- # # based on distance function from previous question
- # P0 = np.random.uniform(-10, 10, (10,2))
- # P1 = np.random.uniform(-10,10,(10,2))
- # p = np.random.uniform(-10, 10, (10,2))
- # print (np.array([distance(P0,P1,p_i) for p_i in p]))
- 80.考虑一个任意数组,写一个函数,提取一个固定形状的子部分,并以给定元素为中心(fill必要时填充一个值)
- (提示: minimum, maximum)
- In [ ]:
- # Z = np.random.randint(0,10,(10,10))
- # shape = (5,5)
- # fill = 0
- # position = (1,1)
- # R = np.ones(shape, dtype=Z.dtype)*fill
- # P = np.array(list(position)).astype(int)
- # Rs = np.array(list(R.shape)).astype(int)
- # Zs = np.array(list(Z.shape)).astype(int)
- # R_start = np.zeros((len(shape),)).astype(int)
- # R_stop = np.array(list(shape)).astype(int)
- # Z_start = (P-Rs//2)
- # Z_stop = (P+Rs//2)+Rs%2
- # R_start = (R_start - np.minimum(Z_start,0)).tolist()
- # Z_start = (np.maximum(Z_start,0)).tolist()
- # R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
- # Z_stop = (np.minimum(Z_stop,Zs)).tolist()
- # r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
- # z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
- # R[r] = Z[z]
- # print (Z)
- # print (R)
- 81. 考虑一个数组Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14],如何生成一个数组R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]?
- (提示: stride_tricks.as_strided)
- In [ ]:
- # Z = np.arange(1,15,dtype=np.uint32)
- # R = stride_tricks.as_strided(Z,(11,4),(4,4))
- # print (R)
- 82. 计算一个矩阵的秩
- (提示: np.linalg.svd)
- In [ ]:
- # Z = np.random.uniform(0,1,(10,10))
- # U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
- # rank = np.sum(S > 1e-10)
- # print (rank)
- 83. 如何找到一个数组中出现频率最高的值?
- (提示: np.bincount, argmax)
- In [ ]:
- # Z = np.random.randint(0,10,50)
- # print (np.bincount(Z).argmax())
- 84. 从一个10x10的矩阵中提取出连续的3x3区块
- (提示: stride_tricks.as_strided)
- In [ ]:
- # Z = np.random.randint(0,5,(10,10))
- # n = 3
- # i = 1 + (Z.shape[0]-3)
- # j = 1 + (Z.shape[1]-3)
- # C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
- # print (C)
- 85. 创建一个满足 Z[i,j] == Z[j,i]的子类
- (提示: class 方法)
- In [ ]:
- # class Symetric(np.ndarray):
- # def __setitem__(self, index, value):
- # i,j = index
- # super(Symetric, self).__setitem__((i,j), value)
- # super(Symetric, self).__setitem__((j,i), value)
- # def symetric(Z):
- # return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
- # S = symetric(np.random.randint(0,10,(5,5)))
- # S[2,3] = 42
- # print (S)
- 86. 考虑p个 nxn 矩阵和一组形状为(n,1)的向量,如何直接计算p个矩阵的乘积(n,1)?
- (提示: np.tensordot)
- In [ ]:
- # p, n = 10, 20
- # M = np.ones((p,n,n))
- # V = np.ones((p,n,1))
- # S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
- # print (S)
- # It works, because:
- # M is (p,n,n)
- # V is (p,n,1)
- # Thus, summing over the paired axes 0 and 0 (of M and V independently),
- # and 2 and 1, to remain with a (n,1) vector.
- 87. 对于一个16x16的数组,如何得到一个区域(block-sum)的和(区域大小为4x4)?
- (提示: np.add.reduceat)
- In [ ]:
- # Z = np.ones((16,16))
- # k = 4
- # S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
- # np.arange(0, Z.shape[1], k), axis=1)
- # print (S)
- 88. 如何利用numpy数组实现Game of Life?
- (提示: Game of Life)
- In [ ]:
- # def iterate(Z):
- # # Count neighbours
- # N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
- # Z[1:-1,0:-2] + Z[1:-1,2:] +
- # Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
- # # Apply rules
- # birth = (N==3) & (Z[1:-1,1:-1]==0)
- # survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
- # Z[...] = 0
- # Z[1:-1,1:-1][birth | survive] = 1
- # return Z
- # Z = np.random.randint(0,2,(50,50))
- # for i in range(100): Z = iterate(Z)
- # print (Z)
- 89. 如何找到一个数组的第n个最大值?
- (提示: np.argsort | np.argpartition)
- In [ ]:
- # Z = np.arange(10000)
- # np.random.shuffle(Z)
- # n = 5
- # # Slow
- # print (Z[np.argsort(Z)[-n:]])
- In [ ]:
- # # 方法2
- # # Fast
- # print (Z[np.argpartition(-Z,n)[:n]])
- 90. 给定任意个数向量,创建笛卡尔积(每一个元素的每一种组合)
- (提示: np.indices)
- In [ ]:
- # def cartesian(arrays):
- # arrays = [np.asarray(a) for a in arrays]
- # shape = (len(x) for x in arrays)
- # ix = np.indices(shape, dtype=int)
- # ix = ix.reshape(len(arrays), -1).T
- # for n, arr in enumerate(arrays):
- # ix[:, n] = arrays[n][ix[:, n]]
- # return ix
- # print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
- 91. 如何从一个正常数组创建记录数组(record array)?
- (提示: np.core.records.fromarrays)
- In [ ]:
- # Z = np.array([("Hello", 2.5, 3),
- # ("World", 3.6, 2)])
- # R = np.core.records.fromarrays(Z.T,
- # names='col1, col2, col3',
- # formats = 'S8, f8, i8')
- # print (R)
- 92. 考虑一个大向量Z, 用三种不同的方法计算它的立方
- (提示: np.power, \*, np.einsum)
- In [ ]:
- # x = np.random.rand()
- # np.power(x,3)
- In [ ]:
- ## 方法2
- # x*x*x
- In [ ]:
- ## 方法3
- # np.einsum('i,i,i->i',x,x,x)
- 93. 考虑两个形状分别为(8,3) 和(2,2)的数组A和B. 如何在数组A中找到满足包含B中元素的行?(不考虑B中每行元素顺序)?
- (提示: np.where)
- In [ ]:
- # A = np.random.randint(0,5,(8,3))
- # B = np.random.randint(0,5,(2,2))
- # C = (A[..., np.newaxis, np.newaxis] == B)
- # rows = np.where(C.any((3,1)).all(1))[0]
- # print (rows)
- 94. 考虑一个10x3的矩阵,分解出有不全相同值的行 (如 [2,2,3])
- In [ ]:
- # Z = np.random.randint(0,5,(10,3))
- # print (Z)
- # # solution for arrays of all dtypes (including string arrays and record arrays)
- # E = np.all(Z[:,1:] == Z[:,:-1], axis=1)
- # U = Z[~E]
- # print (U)
- In [ ]:
- # # 方法2
- # # soluiton for numerical arrays only, will work for any number of columns in Z
- # U = Z[Z.max(axis=1) != Z.min(axis=1),:]
- # print (U)
- 95. 将一个整数向量转换为matrix binary的表现形式
- (提示: np.unpackbits)
- In [ ]:
- # I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
- # B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
- # print(B[:,::-1])
- In [ ]:
- # # 方法2
- # print (np.unpackbits(I[:, np.newaxis], axis=1))
- 96. 给定一个二维数组,如何提取出唯一的(unique)行?
- (提示: np.ascontiguousarray)
- In [ ]:
- # Z = np.random.randint(0,2,(6,3))
- # T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
- # _, idx = np.unique(T, return_index=True)
- # uZ = Z[idx]
- # print (uZ)
- 97. 考虑两个向量A和B,写出用einsum等式对应的inner, outer, sum, mul函数
- (提示: np.einsum)
- In [ ]:
- # A = np.random.uniform(0,1,10)
- # B = np.random.uniform(0,1,10)
- # print ('sum')
- # print (np.einsum('i->', A))# np.sum(A)
- In [ ]:
- # print ('A * B')
- # print (np.einsum('i,i->i', A, B)) # A * B
- In [ ]:
- # print ('inner')
- # print (np.einsum('i,i', A, B)) # np.inner(A, B)
- In [ ]:
- # print ('outer')
- # print (np.einsum('i,j->ij', A, B)) # np.outer(A, B)
- 98. 考虑一个由两个向量描述的路径(X,Y),如何用等距样例(equidistant samples)对其进行采样(sample)?
- (提示: np.cumsum, np.interp)
- In [ ]:
- # phi = np.arange(0, 10*np.pi, 0.1)
- # a = 1
- # x = a*phi*np.cos(phi)
- # y = a*phi*np.sin(phi)
- # dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
- # r = np.zeros_like(x)
- # r[1:] = np.cumsum(dr) # integrate path
- # r_int = np.linspace(0, r.max(), 200) # regular spaced path
- # x_int = np.interp(r_int, r, x) # integrate path
- # y_int = np.interp(r_int, r, y)
- 99. 给定整数n和2D数组X,从X中选择可以解释为具有n度的多项分布的绘制的行,即,仅包含整数并且总和为n的行。
- (提示: np.logical_and.reduce, np.mod)
- In [ ]:
- # X = np.asarray([[1.0, 0.0, 3.0, 8.0],
- # [2.0, 0.0, 1.0, 1.0],
- # [1.5, 2.5, 1.0, 0.0]])
- # n = 4
- # M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
- # M &= (X.sum(axis=-1) == n)
- # print (X[M])
- 100. 计算1D阵列X的平均值的自举95%置信区间(即,对替换N次的阵列的元素进行重新采样,计算每个样本的平均值,然后计算均值上的百分位数)。
- In [ ]:
- # X = np.random.randn(100) # random 1D array
- # N = 1000 # number of bootstrap samples
- # idx = np.random.randint(0, X.size, (N, X.size))
- # means = X[idx].mean(axis=1)
- # confint = np.percentile(means, [2.5, 97.5])
- # print (confint)